Volume Integral Engineering Maths, Btech first year

Volume Integral | Btech Shots!

Volume Integral


Let F be a Vector Point Function and let V be the volume enclosed by a closed surface then the volume integral is given by: vF.dV Here dV=dxdydz


Sample Problem

If F=2zi^xj^+yk^, evaluate volume integral when the equation of surfaces are: x=0,y=0,x=2,y=4,z=x2,z=2

Solution

The equations of surfaces give the limts so, limits for x : 0 to 2, for y : 0 to 4 and for z : x2 to 2 So now volume integral, vF.dV=0204x22(2zi^xj^+yk^)dxdydz =0204[z2i^xzj^+yzk^]x22dxdy =0204[4i^2xj^+2yk^x4i^+x3j^x2yk^]dxdy =0204[4i^2xj^+2yk^x4i^+x3j^x2yk^]dxdy =0204[4i^2xj^+2yk^x4i^+x3j^x2yk^]dxdy =0204[4i^2xj^+2yk^x4i^+x3j^x2yk^]dxdy =02[4yi^2xyj^+y2k^x4yi^+x3yj^x2y22k^]04dx =02[16i^8xj^+16k^4x4i^+4x3j^8x2k^]dx =[16xi^4x2j^+16xk^4x55i^+x4j^8x33k^]02 =32i^16j^+32k^1285i^+16j^643k^ =3215(3i^+5k^)




DC Motor, Basic Electrical Engineering, Btech first year

DC Motor | Btech Shots! DC Motor ...