Gradient Engineering Maths, Btech first year

Gradient | Btech Shots!

Gradient


Let's clear some basics first:

Scalar Point Function : f(x,y,z)=5x+2y+10z

Vector Point Function : f(x,y,z)=xi^+yj^+zk^

Position Vector : R=xi^+yj^+zk^ where i^,j^,k^ are unit vectors of x-axis, y-axis and z-axis respectively

Magnitude : |R|=r=x2+y2+z2

Example: A=2i^+3j^4k^
|A|=22+32+(4)2=29

Direction : A^=A|A|
A^=2i^+3j^4k^29=229i^+329j^429k^

Now let's jump on Gradient.


Gradient of a Scalar

or Del Operator/ Vector Differential Operator/ Vector Operator 

=i^x+j^y+k^z

Gradient : If f be a scalar point function, then f is defined as gradient of f f=(i^x+j^y+k^z)f

grad(f)=fxi^+fyj^+fzk^

Note : f is a scalar, but its gradient is a vector.


Gometrical Interpretation of Gradient :

Gradient of a scalar point function represents the Normal Vector to that surface

Sample Problem :

If ϕ=3x2yy3z2 , find grad(ϕ) at the point (1,-2,-1).

Solution :

To find gradient we simply partially differentiate the function w.r.t. x,y,z and multiply it with the respective unit vectors i.e. i^,j^,k^ as you can observe from the formula ϕ=3x2yy3z2 grad(ϕ)=ϕ=(i^x+j^y+k^z)(3x2yy3z2) =i^x(3x2yy3z2)+j^y(3x2yy3z2)+k^z(3x2yy3z2) gradϕ=i^(6xy)+j^(3x23y2z2)+k^(2y3z) At point (1,-2,-1) grad(ϕ)=6(1)(2)i^+[3(1)23(2)2(1)2]j^2(2)3(1)k^ grad(ϕ)=12i^9j^16k^ It is the normal vector to the surface ϕ


Sample Problem 2 :

Find a unit vector normal to the surface x3+y3+3xyz=3 at point (1,2,-1)

Solution

Here we have to find two things: (a)Normal vector(i.e. gradient) (b) unit vector of that normal at given point.
Equation of the given surface is - x3+y3+3xyz=3 x3+y3+3xyz3=0 Letϕ=x3+y3+3xyz3 Normal vector = grad(ϕ) =(i^x+j^y+k^z)(x3+y3+3xyz3) grad(ϕ)=(3x2+3yz)i^+(3y2+3xz)j^+3xyk^ At point (1,2,-1) N=[3(1)2+3(2)(1)]i^+[3(2)2+3(1)(1)]j^+3(1)(2)k^ N=3i^+9j^+6k^ Now we will find its unit vector N^=N|N| =3i^+9j^+6k^(3)2+(9)2+(6)2 N^=3i^+9j^+6k^126



DC Motor, Basic Electrical Engineering, Btech first year

DC Motor | Btech Shots! DC Motor ...