Leibnitz Theorem Engineering Maths, Btech first year

Leibnitz Theorem

Leibnitz Theorem


This theorem is useful in finding nth derivative of product of two functions.
If u,v are two functions of x, then Dn(uv)=Dn(u)v+nC1Dn1(u)D(v) +nC2Dn2(u)D2(v)+......+nCn(u)Dn(v)


Sample Problem

Find nth derivative of x3cosx

Solution

One thing that we will have to observe is to take which function as u v, because if you observe the formula carefully, its long ofcourse, but it can be shortened just by choosing the function which reduces to 0 after 2 or 3 or 4 derivatives. In this example, x3 will become 0 after 3 derivatives only so this will be v and cosx will be u. Dn(x3cosx)=Dn(cosx)x3+nC1Dn1(cosx)D(x3) +nC2Dn2(cosx)D2(x3)+nC3Dn3(cosx)D3(x3) +nC4Dn4(cosx)D4(x3) =x3cos(x+nπ2)+n(3x2)cos[x+(n1)π2] +n(n1)1×2cos[x+(n2)π2](6x) +n(n1)(n2)1×2×3cos[x+(n3)π2](6) =x3cos(x+nπ2)+3x2nsin(x+nπ2) 3n(n1)xcos(x+nπ2) n(n1)(n2)sin(x+nπ2) Dn(x3cosx)=xcos(x+nπ2)[x23n(n1)] +nsin(x+nπ2)[3x2(n1)(n2)]


Sample Problem 2

If y=(sin1x)2 prove that (1x2)yn+2(2n+1)xyn=1n2yn=0

Solution

y=(sin1x)2 y1=2(sin1x)×11x2 1x2y1=2(sin1x) Squaring on both sides (1x2)y12=4(sin1x)2 (1x2)y1=4y Differentiating on both sides (1x2)2y1y2+(2x)y12=4y1 (1x2)2y1y22xy124y1=0 2y1[(1x2)y2xy12]=0 [(1x2)y2xy12]=0 Now differentiating nth times by Leibnitz Theorem Dn[(1x2)y2]Dn(xy1)Dn(2)=0 [Dn(y2)(1x2)+nC1Dn1(y2)D(1x2)+nC2Dn2(y2)D2(1x2)] [Dn(y1)x+nC1Dn1(y1)D(x)]=0 (1x2)yn+2+nyn+1(2x)+n(n1)1×2yn(2) [xyn+1+nyn]=0 (1x2)yn+22xnyn+1(n2n)yn xyn+1nyn (1x2)yn+22xnyn+1n2yn+nyn xyn+1nyn=0 (1x2)yn+2(2n+1)xyn+1n2yn=0 Hence Proved :)




DC Motor, Basic Electrical Engineering, Btech first year

DC Motor | Btech Shots! DC Motor ...