Jacobian Engineering Maths, Btech first year

Jacobian | Btech Shots!

Jacobian


If u and v are the functions of two independent variables x and y then Jacobian of u and v w.r.t. x,y is: J=J(u,vx,y)=(u,v)(x,y) =|uxuyvxvy| Similarly, for three variables, J=J(u,v,wx,y,z)=(u,v,w)(x,y,z) =|uxuyuzvxvyvzwxwywz| Applications : (1) In change of variables in Multiple Intgration. Example: changing Cartesian coordinates x,y to Polar coordinates r,θ in Double Integral x=rcosθ,y=rsinθ In xydxdydxdy=Jdrdθ (2) To find Functional Relationship between two variables

Properties :
(1) If u and v are functions of x and y then J=J(u.vx,y)=(u,v)(x,y) J=J(x.yu,v)=(x,y)(u,v) J×J=1 (2) Chain Rule : If If u and v are functions of x and y and x and y are functions of r and s then J(u.vr,s)=J(u.vx,y)×J(x,yr,s) (u,v)(r,s)=(u,v)(x,y)×(x,y)(r,s)

Sample Problem 1 :

If x=rcosθ,y=rsinθ, then show that J(x,yr,θ)=r

Solution :

J(x,yr,θ)=r =|xrxθyryθ| Partially differentiating x,y w.r.t. r,θ xr=cosθ,yr=sinθ xθ=rsinθ,yθ=rcosθ Using Jacobian formula, |cosθrsinθsinθrcosθ| =rcos2θ+rsin2θ =r Hence Proved


Sample Problem 2 :

If u=yzx,v=zxy,w=xyz, then find (u,v,w)(x,y,z)

Solution :

Partially differentiating equations w.r.t. x,y,z ux=yzx2,uy=zx,uz=yx vx=zy,vy=zxy2,vz=xy wx=yz,wy=xz,wz=xyz2 J=(u,v,w)(x,y,z) =|uxuyuzvxvyvzwxwywz| =|yzx2zxyxzyzxy2xyyzxzxyz2| =yzx2[(zxy2)(xyz2)(xy)(xz)] zx[(zy)(xyz2)(yz)(xy)] +yx[(zy)(xz)+(zxy2)(yz)] =yzx2[x2yzx2yz]zx[zxz]+yx[xy+xy] =4


Sample Problem 3 :

If x=rcosθ,y=rsinθ then prove that (x,y)(r,θ)×(r,θ)(x,y)=1

Solution :

(x,y)(r,θ)=|xrxθyryθ| =|cosθrsinθsinθrcosθ| =rcos2θ+rsin2θ =r (r,θ)(x,y)=|rxryθxθy| x=rcosθr=xsecθ y=rsinθr=ycosecθ rx=secθ,ry=cosecθ If you are thinking like that, then you are wrong, because r and θ must be functions of same group of variables i.e. x and y just like x and y are functions of r and θ. That means we have to remove θ from r and reduce r into function of x and y. Similarly we will remove r from θ and reduce θ into function of x and y. x=rcosθxr=cosθ y=rsinθyr=sinθ As we know, cos2θ+sin2θ=1 x2r2+y2r2=1 x2+y2=r2 r=x2+y2 Now, rx=12(x2+y2)12×2x rx=xx2+y2 Similarly, ry=yx2+y2 Now for θx and θy yx=rsinθrcosθ yx=tanθ θ=tan1yx θx=11+(yx)2(yx2) θx=yx2+y2 θy=11+(yx)2(1x) θy=xx2+y2 Now putting derivatives, J=|xx2+y2yx2+y2yx2+y2xx2+y2| =(xx2+y2)(xx2+y2)(yx2+y2)(yx2+y2) =1x2+y2 =1r Now, (x,y)(r,θ)×(r,θ)(x,y) =r×1r =1 = R.H.S.


Sample Problem 4 - Composite function :

If u=x2y2,v=2xy and x=xcosθ,y=rsinθ, find J(u,vr,θ)

Solution :

Here, as you can see, u and v are functions of x and y, and x and y are functions of r and θ. So there are two methods to solve this problem:
Method 1 : Substitution
Method 2 : Use Chain Rule J(u,vr,θ)=J(u,vx,y)×J(x,yr,θ) Now, J(u,vx,y)=(u,v)(x,y) =|uxuyvxuy| =|2x2y2y2x| =4x2+4y2 J(x,yr,θ)=|xrxθyryθ| =|cosθrsinθsinθrcosθ| =r(cos2θ+sin2θ) =r Using Chain Rule J(u,vr,θ)=4(x2+y2)×r =4r(x2+y2) =4r(r2cos2θ+r2cos2θ) =4r3


Sample Problem 5

If x=rsinθcosϕ,y=rsinθsinϕ and z=rcosθ, then show that J=r2sinθ

Solution :

x=rsinθcosϕ y=rsinθsinϕ z=rcosθ Now, J=J(x,y,zr,θ,ϕ) =|xrxθxϕyryθyϕzrzθzϕ| =|sinθcosϕrcosθcosϕrsinθsinϕsinθsinϕrcosθsinϕrsinθcosϕcosθrsinθ0| Expanding along R3, =cosθ[(rsinθcosϕ)(rcosθcosϕ)(rcosθsinϕ)(rsinθsinϕ)] (rsinθ)[(sinθcosϕ)(rsinθcosϕ)(rsinθsinϕ)(sinθsinϕ)] +0 =cosθ(r2sinθcosθcos2ϕ+r2cosθsinθsin2ϕ) +rsinθ(rsin2θcos2ϕ+rsin2θsin2ϕ) =cosθ[r2cosθsinθ(cos2ϕ+sin2ϕ)] +rsinθ[rsin2θ(cos2ϕ+sin2ϕ)] =r2cos2θsinθ+r2sin3θ =r2sinθ(cos2θ+sin2θ) =r2sinθ Hence Proved


Sample Problem 6 - Implicit Function (reducable to explicit)

If x+y+z=u;y+z=uv;z=uvw, find J(x,y,zu,v,w)

Solution :

x+y+z=u(1) y+z=uv(2) z=uvw(3) Using equation (3) in (2) y+uvw=uv y=uvuvw Putting value of y+z in equation (1) x=uuv Now, J(x,y,zu.v.w)=(x,y,z)(u,v,w) =|xuxvxwyuyvywzuzvzw| =|1vu0vvwuuwuvvwuwuv| =(1v)[(uuw)uv+u2vw] +u[(uvw)uv+uv2w] =(1v)(u2vu2vw+u2vw)+u(uv2uv2w+uv2w) =u2vu2v2+u2v2 =u2v


Sample Problem 7 - Implicit function (not reducable to explicit) :

If u=xyzv=x2+y2+z2w=x+y+z find J(x,y,zu,v,w)

Solution :

There are two ways to solve this:
Method 1 : Using formula J×J=1J=1J
Method 2 : Using another formula, used especially for such problems
Method 1 is easy, so here we are showing Method 2: u=xyzxyzu=0v=x2+y2+z2x2+y2+z2v=0w=x+y+zx+y+zw=0 Let f1=xyzu f2=x2+y2+z2w f3=x+y+zw Using formula: J(x,y,zu,v,w)=(1)nJ(f1,f2,f3u,v,w)J(f1,f2,f3x,y,z) where n= number of variables in one set, here n=3 Now, J(f1,f2,f3x,y,z)=(f1,f2,f3)(x,y,z) =|f1xf2yf1zf2xf2yf2zf3xf3yf3z| =|yzxzxy2x2y2z111| =yz(2y2z)xz(2x2z)+xy(2x2y) =2y2z2yz22x2z+2xz2+2x2y2xy2 Now, J(f1,f2,f3u,v,w) =|f1uf2vf1wf2uf2vf2wf3uf3vf3w| =|100010001| =1 Now, J(x,y,zu,v,w)=(1)3J(f1,f2,f3u,v,w)J(f1,f2,f3x,y,z) =(1)(1)2(x2yxy2+y2zyz2+xz2x2z) =12(x2yxy2+y2zyz2+xz2x2z)


Functional Dependancy :

If u,v are functons of x,y, then the necessary condition for the existance of functional dependancy is J(u,vx,y)=0

Sample Problem 8 :

Show that function u=x+y1xy, v=tan1x+tan1y are dependant and find relationship between them.

Solution :

u=x+y1xy ux=(1xy)(1)(x+y)(y)(1xy)2 =1xy+xyy2(1xy)2 ux=1y2(1xy)2 uy=(1xy)(1)(x+y)(x)(1xy)2 uy=1+x2(1xy)2 vx=11+x2 vy=11+y2 J(u,vx,y)=|uxuyvxvy| =|1+y2(1xy)21+x2(1xy)211+x211+y2| =[1+y2(1xy)2][11+y2][1+x2(1xy)2][11+x2] =0 Now, to find relationship between u and v u=x+y1xy v=tan1x+tan1y v=tan1x+y1xy [As, tan1A+tan1B=tan1(A+B1AB)] v=tan1u

Sample Problem 9 :

Show that functions u=x+y+zv=x2+y2+z22xy2yz2zxw=x3+y3+z33xy2 are functionally related. Find the relation.

Solution :

J(u,v,wx,y,z) =|uxuyuzvxvyvzwxwywz| =|1112x2y2z2y2x2z2z2y2x3x23yz3y23xz3z23xy| =1[(2y2x2z)(3z23xy)(2z2y2x)(3y23zx)] 1[(2x2y2z)(3z23xy)(2z2y2x)(3x23yz)] +1[(2x2y2z)(3y23zx)(2y2x2z)(3x23yz)] =0 u and v are functionally related  Now, w=x3+y3+z33xyz =(x+y+z)(x2+y2+z2xyyzzx) =u[(v+2xy+2yz+2zx)xyyzzx] =u(v+xy+yz+zx) =44×u(v+xy+yz+zx) =u4(4v+4xy+4yz+4zx) =u4[4v+(2xy+2yz+2zx)(2xy2yz2zx)] =u4[4v+(x2+y2+z2+2xy+2yz+2zx)(x2+y2+z22xy2yz2zx)] =u4[4v+(x+y+z)2v] =u4(3v+u2) 4w=u3+3uv



DC Motor, Basic Electrical Engineering, Btech first year

DC Motor | Btech Shots! DC Motor ...