Rolle's Theorem Engineering Maths, Btech first year

Rolle's Theorem | Btech Shots!

Rolle's Theorem


If f(x) is
a) continuous in [a,b]
b) differentiable in (a,b)
c) f(a)=f(b)
then there exists at least one value c(a,b) such that f(c)=0


Sample Problem

Verify Rolle's Theorem for f(x)=x(x2)e3x4 in (0,2)

Solution

The function is continuous and differentiable in (0,2)
Here a=0 and b=2 f(a)=f(0)=0 f(b)=f(2)=2(22)e64=0 As f(a)=f(b) Rolle's Theorem is applicable. Now, f(x)=(x22x)e3x4×34+e3x4(2x2) According to Rolle's Theorem, f(c)=0 (x22x)e3x4×34+e3x4(2x2) e3x40 34(x22x)+2x2=0 3x22x+8x8=0 3x2+6x8=0 x=2,x=86 Or c=2,c=86 Since c=2(0,2) c=86




DC Motor, Basic Electrical Engineering, Btech first year

DC Motor | Btech Shots! DC Motor ...